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Summary

The transmission/disequilibrium test (TDT) developed
by Spielman et al. can be a powerful family-based test
of linkage and, in some cases, a test of association as
well as linkage. It has recently been extended in several
ways; these include allowance for implementation with
quantitative traits, allowance for multiple alleles, and,
in the case of dichotomous traits, allowance for testing
in the absence of parental data. In this article, these three
extensions are combined, and two procedures are de-
veloped that offer valid joint tests of linkage and (in the
case of certain sibling configurations) association with
quantitative traits, with use of data from siblings only,
and that can accommodate biallelic or multiallelic loci.
The first procedure uses a mixed-effects (i.e., random
and fixed effects) analysis of variance in which sibship
is the random factor, marker genotype is the fixed factor,
and the continuous phenotype is the dependent variable.
Covariates can easily be accommodated, and the pro-
cedure can be implemented in commonly available sta-
tistical software. The second procedure is a permutation-
based procedure. Selected power studies are conducted
to illustrate the relative power of each test under a va-
riety of circumstances.

Introduction

Locating genes influencing quantitative traits in humans
remains a challenging task. Linkage studies have sub-
stantial power problems under many plausible scenarios
(Blackwelder and Elston 1982; Risch and Merikangas
1996; Allison and Schork 1997; Collins et al. 1997).
Association studies, when the marker locus is the trait
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locus or is both linked and associated with the trait locus,
can be substantially more powerful but are subject to
confounding due to population “admixture” or “strat-
ification” (Ewens and Spielman 1995). In this report,
we will use the term “linkage disequilibrium” to refer
to cases in which there is an association between alleles
at two different loci that are linked.

The transmission/disequilibrium test (TDT) developed
by Spielman et al. (1993) can be a powerful family-based
test of linkage and, in some cases, a test of association
as well as linkage. As a test of linkage, the TDT has
high power in the presence of association and will not
give false positives due to the presence of inappropriate
controls. The TDT has been extended in a number of
ways (e.g., see Curtis and Sham 1995; Sham and Curtis
1995; Morris et al. 1997). In the context of the present
report, two developments are noteworthy. First, Allison
(1997) has extended the TDT for use with quantitative
(i.e., continuously distributed) traits, and Rabinowitz
(1997) has further extended this effort, to allow for the
inclusion of multiallelic loci. Second, Spielman and Ew-
ens (1998), Curtis (1997), and Boehnke and Langefeld
(1998) recently have developed family-based tests of
linkage and association that do not require information
about parents; all that they require is that sibships con-
tain at least one affected sibling and one unaffected sib-
ling and that not all siblings have the same genotype.

The purpose of the present study is to develop family-
based tests of linkage, in some cases of both association
and linkage, that can be applied to quantitative traits
among siblings, in the absence of parental information.
This is important because parental information will of-
ten be unavailable, because of financial limitations or
other practical constraints. This is especially so when the
trait of interest is studied among older individuals; for
example, it would be very difficult to recruit an adequate
sample with parents when the phenotype is rate of lean-
body-mass loss (sarcopenia [Rosenberg 1997]) among
elderly individuals.

The remainder of this report consists of three sections.
First, the logical justification for the proposed proce-
dures is presented, and the statistical approaches are de-
scribed. Second, a discussion of power and sample-size
requirements for the procedures is presented with some
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illustrative simulations. Finally, a discussion of related
issues is offered.

Proposed Approach: Justification and Statistical
Models

If an association is observed to exist between phe-
notypes and marker-locus genotypes, this association
can logically be due to several things:

1. the phenotype causes variations in the marker
genotype;

2. the marker genotype (either directly or indirectly
through intermediary phenotypes) causes variations in
the phenotype;

3. the marker locus is both linked to and associated
with another locus that causes variations in the
phenotype;

4. the alleles at a marker locus are associated with
(but not linked to) some other inherited factor that
causes variation in the phenotype.

Only associations due to points 2 and 3 are useful in
the localization of genes affecting the trait, and so the
goal is to conduct a test of association that rules out
points 1 and 4. Point (1) can be ruled out a priori, both
as being logically impossible because genotype precedes
phenotype in time and because it is a fundamental axiom
of causality that cause must precede effect (Hume 17XX
[1988]). Allison (1997) has pointed out that condition-
ing on parents’ genotype at the marker locus is sufficient
to eliminate point 4 as a possible explanation for an
observed association between offspring’s phenotype and
genotype at the marker locus. This is because, in the
absence of linkage and conditional on parental geno-
types at the marker locus, there is no population asso-
ciation between offspring’s genotypes at the marker lo-
cus and other inherited factors, by the law of
independent assortment (of course, observed significant
sample associations can also occur by chance).

Furthermore, it is obvious that, when sibships consist
of full sibs, the probabilities of genotypes of siblings
within a sibship depend totally on the genotypes of their
parents. With unknown parental genotypes, condition-
ing on sibship—that is, controlling for the effects of
membership in a particular sibship—is equivalent to
controlling for parental genotypes, since all siblings
within a sibship have the same parents and, therefore,
the same parental genotypes. This eliminates the pos-
sibility of confounding by population stratification. Pre-
vious authors (Curtis 1997; Boehnke and Langefeld
1998; Spielman and Ewens 1998) have used this idea to
develop sibship tests of linkage and, for certain data
structures, tests of linkage and association.

Herein, we construct and evaluate two such tests, with
samples of unrelated sibships. The first is a mixed-effects
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model; the second is a permutation test. The null hy-
pothesis tested is that there is no linkage between the
marker locus and the trait locus. However, the null hy-
pothesis to be tested becomes lack of both linkage and
association with the trait locus in sibships of minimal
configurations—a minimally configured sibship consists
of two and only two siblings with different genotypes
and phenotypes. Both tests provide inferences condi-
tional on sibships and, therefore, control for any possible
population stratification. The mixed-effects model con-
trols for such stratification by evaluating variation (of
phenotypes) due to genotype within a sibship. The per-
mutation test also controls for such stratification, be-
cause the permutation will be performed within each
sibship, which therefore leads to inferences conditional
on sibship.

This is important because such conditional inferences
make both tests valid for testing of linkage; that is, con-
ditional on sibship, siblings are randomly assigned to
genotypes, and the probability of genotypes at two or
more loci can only be dependent if they are linked. This
implies that tests of the association between a genetic
marker and a phenotype that are conducted conditional
on sibship are valid tests of linkage regardless of whether
the sibships are all of minimal configuration. Regarding
the assertion that only sibships of minimal configuration
yield valid tests of association between alleles at two
loci, the logic has been previously elaborated by Curtis
(1997), Boehnke and Langefeld (1998), and Spielman
and Ewens (1998). This association occurs when there
exists a probabilistic dependency between alleles at two
loci in the total population (Elston 1998).

This approach is fundamentally different than tests of
association that allow family data to be used but that
do not condition on sibships. For example, Trégouét et
al. (1997) have offered a generalized estimating equa-
tions (GEE) method of analysis of data for association
in which some of the data are correlated. In this context,
their method is not controlling for stratification (as they
acknowledge) and is therefore a valid test of association
but not of linkage. It is closely akin to the procedure
developed by George and Elston (1987) and imple-
mented in the SAGE (1997) software.

Mixed-Effects Model

Consider a collection of | sibships such that each sib-
ship consists of two or more full (i.e., non-MZ) siblings.
The number of siblings in the jth sibship will be denoted
by K. Let n; denote the number of siblings in the jth
sibship with the ith genotype (with Z,n2; = K,). The phe-
notype for the kth sibling of the ith genotype in the jth
sibship will be denoted by Y,,. The marker locus M is
assumed to have alleles M,,M,,... .M, , so that there

are as many as “2*1) genotypes in total. In this situation,
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the genotype can be considered to be a fixed factor A
with 71 ]evels, and the sibship can be considered to
be a random factor B with | levels. Therefore, a two-
factor mixed-effects model (i.e., one with fixed and ran-
dom effects) for the phenotype can be formulated as
follows (e.g., see Burdick and Graybill 1992; Neter et

al. 1996):
Y,/L I'L+a +B +(a6) t/k b (1)
where i=1,... J[= me), j=1 /s k =

1,...,m,; (= 0); Ezﬂl; = K; p is a constant; the effect sizes
a; are for the fixed (genotype) factor A; the effect sizes
B; are for the random (sibship) factor B; and the inter-
action effects (o), are also random.

With this formulatlon, testing of genotypic effects on
the phenotype is conditional on sibship, since the sibship
effect is introduced into the model as being random.
However, under almost any sampling scheme, the num-
ber of individuals within each sibship with each genotype
will not be constant across all sibships. This implies that
the model in equation (1) is unbalanced; that is, the 7,
are not all equal. Statistical inferences under this mixed
unbalanced model can be complex (Burdick and Graybill
1992). Although there are many approaches to esti-
mation of variance components and to testing of their
significance, we restricted ourselves to testing the mixed-
effects model by an analysis of variance (AN-
OVA)-based F-test (Burdick and Graybill 1992, chap.
6).

Permutation Test

We next consider an alternative approach, by using a
test statistic, S, whose distribution can be approximated
by an appropriate x*. Let Y, be the trait value of the
kth child in the jth sibship, where j = 1,...,] and k =
1,...,K;. And let N,;, be the number of copies of the ith
allele (not genotype) in the kth child in jth sibship, where
i =1,...,m (the total number of alleles). Then the per-
mutation mean, p,;, of the trait value for the ith allele
observed in the jth sibship can be computed as

K K

| —

1 - K/ K/
By = 7 N = ZY'kEN”k >
TOKl ettt K e

U

where {/p:,-k is the pth permuted trait value for the kth
child in the jth sibship. Specifically, the permutation is
performed within sibships so that Y, becomes a vector
such thatY[,, = (Yp_/l, ... Y,.K)'". Similarly, the permuta-
tion variance V; of the trait value for the ith allele ob-

served in the jth sibship can be computed as
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This shows that V;; can be expressed in terms of the
quantities

K; K; Kj Kj

2 2
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The permutation statistic § can now be written as

2

which, under the null hypothesis of no linkage, can be
approximated by a x? distribution with m — 1 df.

Simulations and Results

In this section we attempt to provide some sense of
the relative power of the two proposed procedures—the
ANOVA-based F-test for the mixed-effects model and
the test statistic S for the permutation test. We also at-
tempt to evaluate the extent to which they appropriately
hold the type I-error rate to the nominal levels. We as-
sume that the marker locus being studied is the trait
locus—that is, there is complete association between
marker and trait alleles, and the recombination fraction
is 0. For each phenotype, let »* (i.e., the locus-specific
heritability) denote the variance proportion that is at-
tributable to the locus in question.

The power of the proposed procedure will depend on
either the noncentrality parameter of the F distribution,
for the mixed-effects model, or the distribution for the
permutation-test statistic S, given a particular design.
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Computation of the noncentrality parameter for a mixed
effects-model ANOVA can be extremely challenging
when the design is unbalanced (Searle 1987). Therefore,
we chose to produce power estimates via simulation. The
simulation studies that we present are not intended to
be an exhaustive sampling of the parameter space of
interest but, rather, are meant to provide a few illustra-
tive examples. The specific parameter sets for which the
simulations were conducted were specifically chosen to
illustrate key features of the test. The effect of genotype
was tested via ANOVA-based F-ratios calculated from
the type III sum of squares in SPSS’s (1997) general
linear-model routine. The type III sum of squares cal-
culates the sum of squares of an effect in a design ad-
justed for all other effects being modeled (Searle 1987,
chap. 12). The calculation of the test statistic S was
programmed in S-plus (Becker et al. 1988).

Base Model

We began selecting a reasonable representation of a
situation that an investigator might actually encounter,
which we labeled as “base model.” It included the fol-
lowing specifications: (1) The biallelic (m = 2) locus un-
der study explained 10% of the total phenotypic vari-
ance (i.e., b* = .1. (2) The alleles at the locus under study
acted in an additive fashion. (3) An additive polygenic
component (A?) explained an additional 30% of the phe-
notypic variance. (4) A nonadditive (dominance [D?])
polygenic component explained an additional 10% of
the phenotypic variance. (5) A shared common environ-
mental component (C?) explained an additional 20% of
the phenotypic variance. (6) The remaining phenotypic
variance, 30%, was explained by a residual environ-
mental component (E*) uncorrelated among siblings. (7)
The frequency of allele M,, the allele associated with
greater values of the trait, denoted as p, was set equal
to .2.

For this base model, data were simulated for four
situations: a constant sibship size of two, for 75 sibships;
a constant sibship size of three, for 50 sibships; a con-
stant sibship size of four, for 38 sibships; and a constant
sibship size of 5, for 30 sibships. For convenience, the
sibship size was kept constant within each simulation.
The sibship sizes selected are those that are relatively
common in the population (Eggebeen 1992). The num-
ber of sibships was selected to maintain the total number
of individuals under study as close to 150 as possible
allowing a comparison of the relative power of using
different sibship sizes given the same number of subjects
studied overall. For each situation, power values were
based on results from 1,000 simulated data sets.

Finally, it should be noted that the number of sampled
sibships listed in table 1 is the total number of sibships
sampled, not the number that were informative; that is,
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sibships in which all siblings have the same genotype
add no information to a test of the genotypic effects
(similarly, a sibship in which all siblings have the same
phenotype also add no information, although, theoret-
ically, this situation will not occur with truly continuous
traits). If only informative sibships were selected, power
would obviously be higher. Unfortunately, one does not
know in advance of doing a study whether sibships will
be informative. The probability that any randomly se-
lected sibship with K siblings will be uninformative is a
function of K and p. Specifically, if random mating and
a biallelic locus are assumed, the probability that a ran-
domly selected family will be informative is

>, P(M,)P(G,|M,)¥

i=1

Py =1-

6 3
t=1
where P(M,) is the probability of parental mating type
t, P(G,|M,) is the probability of offspring having ge-
notype G, given parents of mating type ¢, and K is the
number of siblings in the sibship (see the Appendix).
The results of the power studies are shown in table
1. As can be seen, when the gene explains only 10% of
the variance and the conditions described above hold,
studying 150 subjects yields generally adequate power
at the two-tailed o = .05 but generally inadequate
power for more-stringent values of . It is noteworthy
that, in this situation, switching from sibling pairs to
larger sibships increases power even for the same number
of subjects. This is consistent with many other gene-
mapping situations (Todorov et al. 1997) and expecta-
tions from theory (Keppel 1982, p. 535). Although
a = .05 is not necessarily the most appropriate value to
use for power studies in genetics, results for a reduced
significance level, such as @ = .01 or & = .001, show the
same qualitative results (table 1); in other words, the
relative performances are the same, and it is the pattern
of results that is important in the present context. Re-
searchers planning new research are encouraged to es-
timate power by using the o value appropriate to their
situation. However, it is interesting that, in this situation,
the added power derived from the use of large sibships
is confined primarily to the increase from two to more
than two siblings per sibship; in the current situation,
there is only a modest gain in going beyond trios.

Extreme Sampling

It has been shown, in many contexts, that sampling
of phenotypically extreme individuals and relatives can
markedly increase the power of gene-mapping studies
(Eaves and Meyer 1994; Risch and Zhang 1995, 1996;
Allison and Schork 1997; Allison et al. 1998). Most
demonstrations of this phenomenon have been limited
to the case of sibling pairs for which the definition of



Table 1

Power Results from Mixed Effects-Model ANOVA and from Permutation-Test Statistic S, for Simulated Phenotypes When Total Number of Alleles (M and m) Is 2

POWER

Mixed Effects—Model

QTL VARIANCE® EFFECT OF GENOTYPE ANOVA, for a= Statistic S, for o =
No. OF FREQUENCY
SIMULATIONS p* K | ADDITIVE DOMINANCE MM Mm mm OF m COMMENT .05 .01¢ .001¢ .05¢ .01¢ .001°¢
1,000 42 2 75 .10 .00 —.224 335 .894 2 Base .56 .32 69 .35
1,000 42 3 50 .10 .00 —.224 .335 .894 2 Base 71 43 17 82 .59 24
1,000 42 4 38 .10 .00 —.224 335 .894 2 Base .75 48 .19 88 .69 .33
1,000 425 30 .10 .00 —.224 .335 .894 2 Base .78 .52 .20 88 .72 .39
1,000 .00 4 38 .10 .00 —.224 335 .894 2 No correlation S1 27 66 40 14
1,000 42 4 38 .03 .07 —-.065 —.065 1.549 2 Recessive m 77 .58 .33 37 17
1,000 42 4 38 .09 .01 —.237 422 422 2 Dominant m .80 .54 27 86 .64 29
1,000 42 4 38 .00 .10 -.316 316 -.316 5 Overdominance .92 77 47
1,000 42 4 38 .10 .00 —.447 .000 447 .5 Additive .77 .53 24 89 71 .39
1,000¢ 42 4 38 .10 .00 —.224 .335 .894 2 Extreme 98 .93 .78 1.00 .99 .90
10,000 .38 4 38 .00 .00 .000 .000 .000 2 Null .0455  .0087  .0009  .0468 .0075 .0003
10,000¢ 38 4 38 .00 .00 .000 .000 .000 2 Null/extreme .0461  .0101 .0019  .0496 .0078 .0009
10,000 38 4 38 .00 .00 .000 .000 .000 .9/.05¢  Null/population stratification .0485 .0114 .0016  .0484 .0059 .0001
Lt 1 50 .10 .00 —.224 335 .894 2 Parent based .26 .26

* A value of .42 occurs if, for example, the QTL explains 10% of the phenotypic variance and A*
* b =0} + op.
¢ An ellipsis (...) denotes that the estimated power is <.10.
¢ Extreme sampling; for this situation, the “best” 38 were selected from 200 initial sibships, on the basis of the Mahalanobis distance score of phenotypes among siblings in each sibship

¢ .90 is the frequency in population 1; .05 is the frequency in population 2.

f Powers for the parent-based TDT have been analytically calculated.

3,D’=.1,C=2,and > = .3
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extreme concordance and discordance is somewhat sim-
pler. To our knowledge, there has been no development
of a criterion for extreme sampling in the context of
larger sibships.

For this purpose, we chose to use the Mahalanobis
distance, calculated on the basis of the phenotypic scores
of all siblings within each sibship. The Mahalanobis dis-
tance can be defined as a standardized (by the inverse
of the covariance matrix) distance between any two
points in multidimensional space; that is, (X;—
X,)'27(X, — X|), for points X, and X in a multidimen-
sional space, where I is the covariance matrix of the
points (or the multivariates). In the present study, how-
ever, that is the standardized distance between a point
and the center of a multivariate distribution. This
method assigns to each sibship a score indicating its
degree of “multivariate unusualness” (Krzanowski
1988, p. 234). Selecting the sibships with the highest
values of the Mahalanobis distance seems to be a rea-
sonable way to select phenotypically extreme sibships
with more than two siblings per sibship. Using this ap-
proach, we simulated 200 randomly sampled sibships of
size four, given the base model described above, and then
selected the 38 sibships with the highest value of the
Mahalanobis distance. This dramatically increased the
power for both the mixed-effects model and the per-
mutation test (table 1). Especially, the permutation test
now had an excellent power even for o = .001 and had
perfect power for o = .05 (table 1).

The Effect of Residual Correlation

The quantities A%, D?, and C* come together to influ-
ence the residual correlation among siblings (i.e., the
correlation among siblings’ phenotypes that is condi-
tional on genotype). Specifically, the residual correlation
pis p=(4+2 +C»/(1—h?) (Neale and Cardon
1992). As has been shown elsewhere, the power of var-
iance-components linkage approaches for detection of
genes in sib-pair designs is generally increased when
there is greater residual correlation (Schork 1993). In
the context of the mixed-effects model, we would also
expect increased residual correlation to increase power,
because this increases the magnitude of the random ef-
fect of the sibship and, thereby, decreases both the re-
sidual variance and the denominator of the F-statistic
testing the effect of genotype. To observe the influence
that sibling residual correlation has on the sibling-based
tests (proposed herein), we simulated the base model,
again using four siblings per sibship and 38 sibships, but
we set the values of A%, C*, and D? at 0 and set E* at
.9. This yielded a residual correlation of 0. When the
residual correlation was reduced from its initial value to
0, power decreased substantially, for both the mixed-
effects model and the permutation test (table 1). This
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illustrates that, all other things being equal, phenotypes
with greater “familiality” will be able to be mapped with
greater power by use of sibling-based tests.

Comparison with a Parent-Based TDT

It is interesting to ask what the relative power of these
sibling-based tests would be if compared with a parental
TDT (Allison 1997) that used the same amount of re-
sources. In the TDT, at least three individuals must be
genotyped within each nuclear family: the father, the
mother, and one or more offspring. We therefore cal-
culated the power to detect a quantitative-trait locus
(QTL) under the “base” model described earlier, with
50 nuclear families each consisting of two parents and
one offspring; that is, we used the same number of in-
dividuals (150) that was used in the preceding simula-
tions. Power was calculated by methods described by
Allison (1997) and was checked via simulation. The an-
alytic and simulation results agreed very closely, and the
former are reported herein. Table 1 shows that, when
only one sibling per nuclear family is used, the parent-
based TDT is dramatically less powerful than both sib-
ling-based tests, on a per person basis (although the sib-
based tests require more phenotyping). This may be due
to the difference between the expected number of in-
formative observations that is useful for the parent-
based test versus the sibling-based test; for example, in
the current situation, where p = .2, with 50 nuclear fam-
ilies (a total of 150 individuals) for the parent-based test
for a bialleic locus, the expected number of informative
observations is 27 data units, whereas, in contrast, with
75 sibling pairs (a total of 150 individuals) for the sib-
ling-based test for a bialleic locus, the expected number
of informative observations is 42 data units. Alterna-
tively, one might conjecture that the reduced power of
the parent-based TDT might be due to the fact that,
conceptually, a trio yields the equivalent of one known
phenotype and one unknown phenotype (relating to the
untransmitted alleles), rather than the three phenotypes
that one gets from three siblings.

Effect of Dominance at the Marker Locus

Because the correlation, among siblings, for the phe-
notype (the total correlation, not the residual correla-
tion) is a function of A%, C*, D? and the effects of the
marker locus (Neale and Cardon 1992), the random
effect of sibship and the fixed QTL effect will be cor-
related to some extent. This colinearity affects the power
of the mixed-model test for the fixed effect. All other
things being equal, the lower this degree of colinearity,
the more powerful the test. It is noteworthy, then, that
the additive component of the QTL effect contributes
more strongly to sibling correlations than the dominance
component does; specifically, one half of the additive
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variance of the QTL is contributed to the sibling co-
variance, whereas only one fourth of the dominance var-
iance of the QTL is contributed to the sibling covariance.

Therefore, we simulated the power of the test by using
the base model but varying, in three ways, the mode of
inheritance. First, we set the mode of inheritance to be
recessive such that the mean of the “wild-type” homo-
zygotes and the mean of the heterozygotes was equal
and only the mean of individuals homozygous for the
increasing allele was higher. Second, we set the mode of
inheritance to be dominant such that the mean of the
wild-type homozygotes was less than those of individ-
uals with the other two genotypes, with the means of
the latter two genotypes being the same. Third, we se-
lected an extreme case of dominance—namely, over-
dominance. In this model, only the heterozygote had any
elevation in the mean of the phenotype, and we changed
the value of p from .2 to .5. This particular configuration
of means and gene frequency was selected to yield the
highest possible dominance variance at the QTL, given
the fixed QTL effect of 10%. We intentionally selected
such a pattern in order to observe the power under an
extreme situation, in which all of the QTL variance was
nonadditive. Such overdominance (in which 100% of
the QTL variance is nonadditive), although presumably
rare, is not unheard of; for example, the callipyge sheep
has been shown to exhibit such a pattern of inheritance
for a quantitative trait relating to body composition
(Georges and Cockett 1996). In addition, to ensure that
any power difference observed in this third model was
not due solely to increasing the allele frequency from .2
to .5, we also evaluated power for the strictly additive
case with an allele frequency of .5.

In these cases where the ratio of dominance variance
to additive variance at the QTL was increased dramat-
ically while the total variance due to the QTL was kept
constant, power was increased for the mixed-effects
model but was decreased for the permutation test (table
1). Thus, when all other factors are held constant, QTL
with more dominance effects will be detectable with
greater power when the mixed-effects model is used.
This effect appears to be due to dominance and not to
changing the allele frequency to .5, since the model in
which the allele frequency was changed but additivity
remained unchanged resulted in no substantial change.
However, it should be pointed out that the extreme sit-
uation of 100% of variance at the QTL being nonad-
ditive need not occur, given overdominance, and was
intentionally selected to yield a situation in which the
relative power of each proposed test in response to var-
iance in the degree of dominance would be portrayed in
stark relief.
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Type I-Error Rate

To confirm that the procedures held the type I-error
rate at or below the nominal « values, we simulated
models under the null hypothesis of no linkage (i.e.,
when the means of the genotypes are equal). For the
simulations under the null hypothesis, given that the
expected proportion of trials with significant results was
much smaller, we increased the number of trials to
10,000, to increase the precision of our estimates. As
can be seen in table 1, both the mixed-effects model and
the permutation test performed quite adequately in this
regard.

In addition, we simulated the null scenario, incor-
porating the extreme sampling procedure described
above. This is especially important in order to evaluate
the extent to which the observed increase in power with
extreme sampling is either a “true” increase in power
or an artifact of an inflated type I-error rate due to the
extreme sampling’s violation of assumptions of nor-
mality and independence (Wilcox 1997). It is notewor-
thy and reassuring that, as indicated in table 1, the ex-
treme sampling employed herein did not affect the type
I-error rate at all for « values as low as .01; for o values
lower than that, the number of simulations conducted
is too small to allow firm conclusions. It should be noted,
however, that we are not claiming that any form of ex-
treme sampling with any sample size will not affect the
type I error rate; it is possible that other types of extreme
sampling, with smaller sample sizes, might have unto-
ward effects on the type I-error rate.

Finally, to see whether the type I-error rates of the
two tests herein are robust to population stratification,
we assumed two populations, 1 and 2, with the follow-
ing conditions.

1. The frequencies of allele m are .90 and .05 for
populations 1 and 2, respectively.

2. The population means are 1 and —1 for populations
1 and 2, respectively, with the same within-population
variance (i.e., 1).

3. There is no genotypic effect for either population.

We simulated 19 sibships, with four siblings each, for
each population and combined them into a single sample
of 38 sibships with four siblings each, for 10,000 times.
The results are shown in table 1. For both tests, the
actual significance levels are seen to be near the nominal
levels, although the permutation test tended to be a little
conservative for lower significance levels.

Simulations with Multiallelic Loci

Finally, we evaluated the two proposed procedures’
power with multiallelic loci. We chose to test our base
model with K =4 as the number of siblings in each
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sibship, the only modification being that allele M, was
relabeled as M,,M;, ..., M, where a was three to six.
This, combined with allele M,, gives us a multiallelic
locus with the number of alleles being three to six and
with the number of possible genotypes being 6-21. The
frequencies of the alleles from M, to M, are all the same;
that is, 1=2. The effects of the alleles were set to be
identical; that is, if one were to collapse alleles M,—M,
into a single category, then the multiallelic models tested
would be identical to the base model. However, from
the data analyst’s point of view, there is no way of know-
ing a priori that the alleles M,—M, should be collapsed,
and we therefore tested them as separate alleles, as has
been described above.

The results of these simulations are presented in table
2. As can be seen, the power of the mixed effects—-model
test decreases as the number of alleles increases. This is
expected, given both the greater number of degrees of
freedom in the test and the unchanging sizes of effects.
Although the power of the permutation test also de-
creases as the number of alleles increases, the drop is
less than that for the mixed-effects model; therefore,
with a larger number of alleles, the permutation test
performs better. Whether this exact pattern of results
would hold with a different distribution of allele fre-
quencies is unknown.

Discussion

The procedures proposed in this paper allow the ad-
vantages of the TDT to be applied to sibling data when
the outcome variable is a quantitative trait, even in the
absence of parental information. There are several
strengths to the procedures proposed. For the mixed-
effects model, four advantages come to mind. First, the
mixed-effects model can be readily implemented in com-
monly available software packages that have mixed ef-
fects—model procedures such as SAS and SPSS. Second,
covariates such as age, sex, and measured life-style fac-
tors could be easily incorporated. Third and similarly,
additional loci can be incorporated either as fixed factors
or, when interaction terms are included, to test for epis-
tasis (Frankel and Schork 1996). Fourth, the procedure
also accommodates sibships of any and varying size (as
long as there are at least two sibs). For the permutation
test, the two major advantages are greater power in some
cases and the fact that it is distribution free—that is, no
assumptions about the marginal phenotype distribution
is required.

For readers interested in real-world examples, Ben-
jamin et al. (1996) and Mitchell et al. (1998) conducted
tests, using sib pairs, that are valid sibling-based tests
for quantitative traits (although they do not develop the
general theory and procedures, as we have done herein).
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Table 2

Comparison of Powers between Mixed Effects—Model
ANOVA and Permutation-Test Statistic S, under Base
Model for Multiple Alleles (with 1,000 Simulations), for
K=4and J =38

POWER, FOR a=

TesT AND TOTAL NoO. OF ALLELES .05 .01  .001*
Mixed effects—model ANOVA:

3 64 40 .16

4 530 .28

5 4221

6 36 .16
Permutation-test statistic S:

3 71 42 A1

4 .66 .37 13

5 65 .37

6 58 31

* An ellipsis (...) denotes that the estimated power is
<.10.

More recently, Chung et al. (in press) have applied both
the mixed-effects model and the permutation test to
data, examining the association between uncoupling
protein-3  polymorphisms  and  obesity-related
phenotypes.

Although the mixed-effects model has relatively little
power for multiple alleles, because it is essentially as-
sessing genotypic effects rather than allelic effects, gen-
otypic effects (even those for the multiallelic markers)
can be of great interest in terms of inferring, for example,
mode of inheritance. Moreover, as we have shown, when
there is nonadditivity at the QTL, power can be mark-
edly enhanced by consideration of the genotypic, rather
than the allelic, effects. Furthermore, it may not be wise
to try to detect every single allelic effect when some
alleles have very low frequency. Rather, by treating such
alleles as a group (Kaplan et al. 1998) and applying the
mixed-effects model, one may detect the genotypic ef-
fects, without loss of great power. The permutation test
can, of course, be used for the detection of allele effects
for multiallelic markers, and the mixed-effects model
could also be adapted to this purpose.

One question that arises when one is considering the
application of these procedures is which of the two tech-
niques described herein should be used. Because, de-
pending on the circumstances, each technique has ad-
vantages over the other, we are unable to make a blanket
recommendation; that is, on the basis of the simulation
results, the mixed-effects model performs relatively bet-
ter when the degree of dominance is greater, and, in
contrast, the permutation test performs better when the
degree of dominance is minimal. Because investigators
are not likely to know exactly the architecture of the
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traits that they are studying, they are generally unable
to choose which technique is the best for them a priori.

The obvious alternative—and the one that we suspect
most investigators will adopt—is simply to run both
analyses and to declare the results significant if either
test produces a P value below one’s chosen significance
value for a. Although we do not explicitly advocate
against this, investigators should be aware that such an
approach will increase the overall type I-error rate under
the null hypothesis, and, consequently, investigators
adopting this approach should certainly make readers
aware of this fact when publishing the results. The de-
gree to which inflation of the type I-error rate is induced
by conducting both the permutation test and the mixed
effects—model test is unknown. If the two tests statistics
were perfectly correlated, then there would be no infla-
tion at all; if the correlation were 0 (a very unlikely
possibility), then the type l1-error rate would be 1 —
(1 — a)*. Obviously, the reality lies somewhere between
the two—and (we suspect) closer to the former.

Several extensions of this procedure might be envi-
sioned in the future. First, it should be possible to in-
corporate multiple phenotypes into the analyses, via ei-
ther procedures that correctly adjust the type I-error rate
for multiple univariate analyses (Allison and Beasley
1998) or true multivariate procedures (Markel and Cor-
ley 1994). Second, in the event that the assumption of
normality is not met and cannot be satisfied either with
a transformation or by appeal to large-sample theory,
nonparametric tests (e.g., see Good 1995) may be used,
including the permutation test presented herein.

A third approach might be to develop a truly multi-
point (as opposed to a simply multilocus) test that si-
multaneously uses the information from several loci to
estimate both the point on a chromosome at which the
QTL is most likely to lie and its confidence interval. This
procedure might also be extended to analyze data from
related sibships (e.g., sets of cousins). Currently, the
model provided assumes that sibships are independent.
However, dependent sibships might be accommodated
by inclusion of additional nesting factors.

Finally, it should be noted that the procedure that has
been developed herein assumes that the siblings are truly
full siblings. The use of sibships including half-siblings
allows for potential confounding. Fortunately, given a
reasonable number of polymorphic markers genotyped
on the siblings, inclusion of half-siblings due to non-
paternity can be ruled out with high probability (Ja-
mieson 1994; Boehnke and Cox 1997; Goring and Ott
1997); however, this might be a more serious issue for
studies using only a few single-nucleotide polymor-
phisms each for one or two candidate genes.

In conclusion, we note that previous work (Spielman
et al. 1993; Allison 1997; Curtis 1997; Spielman and
Ewens 1998) was extended to the development of tests

Am. ]J. Hum. Genet. 64:1754-1764, 1999

that have the desirable properties of the TDT, can be
applied to quantitative traits, and do not require parental
information. These models should be flexible, allowing
adaptation to many circumstances and additional
developments.
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Appendix

The informative event I is the situation in which, for
a sibship consisting of K (i.e., more than one) siblings,
not all siblings have the same genotype. For a biallelic
marker with both unknown parental mating type M,
(t = 1,2,...,6) and sibling genotypes G, (i = 1, ...,3), the
probability P(I) can be drawn as follows, where G is
the genotype of the kth (k = 1,2,...,K) sibling in the
sibship:

where T is the complement of I—that is, is a nonin-
formative event—and the last of the preceding equations
is due to independence of sibling genotypes that is con-
ditional on parental mating-type. The probabilities
P(M,) and P(G;|M,) can be found in table A1, where p
is the frequency of allele A and ¢ = 1 — p.

Table A1
P(G;|M,)

t M, PM,) AA(G=1) Aa(i=2) aa(i=23)
1 AAAA p' 1 0 0
2 AA, Aa  4p’q 1 1 0
3 AAjaa  2p°¢7 0 1 0

22 1 1 1
4 Aa, Aa  4p’q 7 2 1
5 Aa, aa 4pq’ 0 % %
6 aa, aa q' 0 0 1
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